95 research outputs found

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios

    Covid-19: Open-Data Resources for Monitoring, Modeling, and Forecasting the Epidemic

    Get PDF
    We provide an insight into the open-data resources pertinent to the study of the spread of the Covid-19 pandemic and its control. We identify the variables required to analyze fundamental aspects like seasonal behavior, regional mortality rates, and effectiveness of government measures. Open-data resources, along with data-driven methodologies, provide many opportunities to improve the response of the different administrations to the virus. We describe the present limitations and difficulties encountered in most of the open-data resources. To facilitate the access to the main open-data portals and resources, we identify the most relevant institutions, on a global scale, providing Covid-19 information and/or auxiliary variables (demographics, mobility, etc.). We also describe several open resources to access Covid-19 datasets at a country-wide level (i.e., China, Italy, Spain, France, Germany, US, etc.). To facilitate the rapid response to the study of the seasonal behavior of Covid-19, we enumerate the main open resources in terms of weather and climate variables. We also assess the reusability of some representative open-data sources.Plan Propio de la Universidad de Sevill

    Censored deep reinforcement patrolling with information criterion for monitoring large water resources using Autonomous Surface Vehicles

    Get PDF
    © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Monitoring and patrolling large water resources is a major challenge for nature conservation. The problem of acquiring data of an underlying environment that usually changes within time involves a proper formulation of the information. The use of Autonomous Surface Vehicles equipped with water quality sensor modules can serve as an early-warning system for contamination peak-detection, algae blooms monitoring, or oil-spill scenarios. In addition to information gathering, the vehicle must plan routes that are free of obstacles on non-convex static and dynamics maps. This work proposes a novel framework to obtain a collision-free policy using deterministic knowledge of the environment by means of a censoring operator and noisy networks that addresses the informative path planning with emphasis in temporal patrolling. Using information gain as a measure of the uncertainty reduction over data, it is proposed a Deep Q-Learning algorithm improved by a Q-Censoring mechanism for model-based obstacle avoidance. The obtained results demonstrate the effectiveness of the proposed algorithm for both cases in the Ypacaraí monitorization task. Simulations showed that the use of noisy-networks are a good choice for enhanced exploration, with 3 times less redundancy in the paths with respect to — greedy policy. Previous coverage strategies are also outperformed both in the accuracy of the obtained contamination model by a 13% on average and by a 37% in the detection of dangerous contamination peaks. Finally, the achieved results indicate the appropriateness of the proposed framework for monitoring scenarios with autonomous vehicles

    Optimizing the Layout of Run-of-River Powerplants Using Cubic Hermite Splines and Genetic Algorithms

    Get PDF
    Despite the clear advantages of mini hydropower technology to provide energy access in remote areas of developing countries, the lack of resources and technical training in these contexts usually lead to suboptimal installations that do not exploit the full potential of the environment. To address this drawback, the present work proposes a novel method to optimize the design of mini-hydropower plants with a robust and efficient formulation. The approach does not involve typical 2D simplifications of the terrain penstock layout. On the contrary, the problem is formulated considering arbitrary three-dimensional terrain profiles and realistic penstock layouts taking into account the bending effect. To this end, the plant layout is modeled on a continuous basis through the cubic Hermite interpolation of a set of key points, and the optimization problem is addressed using a genetic algorithm with tailored generation, mutation and crossover operators, especially designed to improve both the exploration and intensification. The approach is successfully applied to a real-case scenario with real topographic data, demonstrating its capability of providing optimal solutions while dealing with arbitrary terrain topography. Finally, a comparison with a previous discrete approach demonstrated that this algorithm can lead to a noticeable cost reduction for the problem studied

    A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles: The Ypacaraí Lake Patrolling Case

    Get PDF
    Article number 9330612Autonomous surfaces vehicles (ASVs) excel at monitoring and measuring aquatic nutrients due to their autonomy, mobility, and relatively low cost. When planning paths for such vehicles, the task of patrolling with multiple agents is usually addressed with heuristics approaches, such as Reinforcement Learning (RL), because of the complexity and high dimensionality of the problem. Not only do efficient paths have to be designed, but addressing disturbances in movement or the battery’s performance is mandatory. For this multiagent patrolling task, the proposed approach is based on a centralized Convolutional Deep Q-Network, designed with a final independent dense layer for every agent to deal with scalability, with the hypothesis/assumption that every agent has the same properties and capabilities. For this purpose, a tailored reward function is created which penalizes illegal actions (such as collisions) and rewards visiting idle cells (cells that remains unvisited for a long time). A comparison with various multiagent Reinforcement Learning (MARL) algorithms has been done (Independent Q-Learning, Dueling Q-Network and multiagent Double Deep Q-Learning) in a case-study scenario like the Ypacaraí lake in Asunción (Paraguay). The training results in multiagent policy leads to an average improvement of 15% compared to lawn mower trajectories and a 6% improvement over the IDQL for the case-study considered. When evaluating the training speed, the proposed approach runs three times faster than the independent algorithm.Ministerio de Ciencia, Innovación y Universidades (España) RTI2018-098964-B-I00Junta de Andalucía(España) PY18-RE000

    An Evolutionary Computational Approach for Designing Micro Hydro Power Plants

    Get PDF
    Micro Hydro Power Plants (MHPP) constitute an effective, environmentally-friendly solution to deal with energy poverty in rural isolated areas, being the most extended renewable technology in this field. Nevertheless, the context of poverty and lack of qualified manpower usually lead to a poor usage of the resources, due to the use of thumb rules and user experience to design the layout of the plants, which conditions the performance. For this reason, the development of robust and efficient optimization strategies are particularly relevant in this field. This paper proposes a Genetic Algorithm (GA) to address the problem of finding the optimal layout for an MHPP based on real scenario data, obtained by means of a set of experimental topographic measurements. With this end in view, a model of the plant is first developed, in terms of which the optimization problem is formulated with the constraints of minimal generated power and maximum use of flow, together with the practical feasibility of the layout to the measured terrain. The problem is formulated in both single-objective (minimization of the cost) and multi-objective (minimization of the cost and maximization of the generated power) modes, the Pareto dominance being studied in this last case. The algorithm is first applied to an example scenario to illustrate its performance and compared with a reference Branch and Bound Algorithm (BBA) linear approach, reaching reductions of more than 70% in the cost of the MHPP. Finally, it is also applied to a real set of geographical data to validate its robustness against irregular, poorly sampled domains.Agencia Española de Cooperación Internacional para el Desarrollo 2014 / ACDE / 00601

    Cell Complexes and Membrane Computing for Thinning 2D and 3D Images

    Get PDF
    In this paper, we show a new example of bridging Algebraic Topology, Membrane Computing and Digital Images. In [24], a new algorithm for thinning multidimensional black and white digital images by using cell complexes was presented. Such cell complexes allow a discrete partition of the space and the algorithm preserves topological and geometrical properties of the image. In this paper, we present a parallel adaptation of such algorithm to P systems, by introducing some concepts of Algebraic Topology in the Membrane Computing framework. The chosen model for the implementation is tissue-like P systems with promoters, inhibitors and priorities.Ministerio de Ciencia e Innovación TIN2008-04487-EMinisterio de Ciencia e Innovación TIN-2009-13192Junta de Andalucía P08-TIC-0420

    Integer Linear Programming for Tissue-like P Systems

    Get PDF
    In this paper we report a work-in-progress whose final target is the implementation of tissue-like P system in a cluster of computers which solves some instances of the segmentation problem in 2D Digital Imagery. We focus on the theoretical aspects and the problem of choosing a maximal number of application of rules by using Integer Linear Programming techniques. This study is on the basis of a future distribution of the parallel work among the processors.Ministerio de Ciencia e Innovación TIN2008-04487-EMinisterio de Ciencia e Innovación TIN-2009-13192Junta de Andalucía P08-TIC-0420

    Route duration improvement in wireless sensor and actuator networks based on mobility parameters and flooding control

    Get PDF
    Mobility of nodes is one of the main causes of broken links in wireless networks. Although several theoretical models for links and routes selection have been proposed in the literature, so far little effort has been made to apply them to the existing routing protocols. In this article, a decision tree has been incorporated in a reactive routing protocol in order to select the most long-lived routes. The decision tree is based on nodes ’ mobility parameters typically considered by the theoretical models, such as distance between nodes, relative speed, and nodes ’ directions. The flooding techniques used within the routing protocols for the routing discovery procedures cause a massive usage of control packets which in turn has negative impact on the performance of the networks. So, an improved flooding control is presented in this article that enhances the performance of the proposed route selection based on a decision tree, in turn reducing overheads and the power consumption caused by the control packets. These two proposed approaches have been implemented over a widely used reactive routing protocol such as Ad Hoc On-Demand Distance Vector (AODV) to obtain performance results using Network Simulator 2 simulation tool. The performances of the proposed approaches have been compared with that of the AODV implementation in terms of general performance and path duration. The simulation results show that the proposed route selection significantly improves the results of AOD

    An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes

    Get PDF
    In the last decades, new types of generation technologies have emerged and have been gradually integrated into the existing power systems, moving their classical architectures to distributed systems. Despite the positive features associated to this paradigm, new problems arise such as coordination and uncertainty. In this framework, microgrids constitute an effective solution to deal with the coordination and operation of these distributed energy resources. This paper proposes a Genetic Algorithm (GA) to address the combined problem of Unit Commitment (UC) and Economic Dispatch (ED). With this end, a model of a microgrid is introduced together with all the control variables and physical constraints. To optimally operate the microgrid, three operation modes are introduced. The first two attend to optimize economical and environmental factors, while the last operation mode considers the errors induced by the uncertainties in the demand forecasting. Therefore, it achieves a robust design that guarantees the power supply for different confidence levels. Finally, the algorithm was applied to an example scenario to illustrate its performance. The achieved simulation results demonstrate the validity of the proposed approach.Ministerio de Ciencia, Innovación y Universidades TEC2016-80242-PMinisterio de Economía y Competitividad PCIN-2015-043Universidad de Sevilla Programa propio de I+D+
    corecore